Search results

Search for "electrical contact" in Full Text gives 57 result(s) in Beilstein Journal of Nanotechnology.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • in the structure shown in Figure 1b using e-beam lithography. There were no metal films deposited on NCG, and the electrical contact was made between gold spring contacts and NCG directly. For Raman measurements, S1805 (1:10 dilution with PGMEA) was spin-coated on both sides of the flexible glass
PDF
Album
Full Research Paper
Published 08 Apr 2024

In situ magnesiothermic reduction synthesis of a Ge@C composite for high-performance lithium-ion batterie anodes

  • Ha Tran Huu,
  • Ngoc Phi Nguyen,
  • Vuong Hoang Ngo,
  • Huy Hoang Luc,
  • Minh Kha Le,
  • Minh Thu Nguyen,
  • My Loan Phung Le,
  • Hye Rim Kim,
  • In Young Kim,
  • Sung Jin Kim,
  • Van Man Tran and
  • Vien Vo

Beilstein J. Nanotechnol. 2023, 14, 751–761, doi:10.3762/bjnano.14.62

Graphical Abstract
  • % (compared to the sixth cycle) after 200 cycles. This is explained by the breakdown of Ge particles during continuous lithiation/delithiation, which causes high structural stress and leads to the loss of electrical contact between active material and the current collector. The Ge@C electrodes, after a short
PDF
Album
Full Research Paper
Published 26 Jun 2023

Structural studies and selected physical investigations of LiCoO2 obtained by combustion synthesis

  • Monika Michalska,
  • Paweł Ławniczak,
  • Tomasz Strachowski,
  • Adam Ostrowski and
  • Waldemar Bednarski

Beilstein J. Nanotechnol. 2022, 13, 1473–1482, doi:10.3762/bjnano.13.121

Graphical Abstract
  • also observed using this microscope. The SEM images show the morphology of the LiCoO2 obtained at different synthesis temperatures. Before analysis, the samples were sputtered with graphite to improve the electrical contact. All samples were observed at 1 kV. EPR analysis Electron paramagnetic
PDF
Album
Full Research Paper
Published 07 Dec 2022

A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy

  • Hao Liu,
  • Zuned Ahmed,
  • Sasa Vranjkovic,
  • Manfred Parschau,
  • Andrada-Oana Mandru and
  • Hans J. Hug

Beilstein J. Nanotechnol. 2022, 13, 1120–1140, doi:10.3762/bjnano.13.95

Graphical Abstract
  • the case of extensive wear. The conical end of the screw then presses on a sapphire inlay glued to the bottom part of the clamping spring. The fixation of the sample/cantilever holder inside the corresponding receiver also leads to an electrical contact between pads on the sample/cantilever holder and
  • voltage, coaxial cables Lakeshore CC-SS-100 [51] with a SMA connector at their ends are used. These are wired to the two front electrical contact pins (Figure 7d–f). For all other contacts and also the wiring for the scan piezo, piezo motors, piezo for the mechanical actuation of the cantilever
PDF
Album
Full Research Paper
Published 11 Oct 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • , on which the graphene film would make electrical contact. The B2 PMMA/graphene films were then transferred onto the wafer and patterned by O2 plasma, followed by the sacrificial layer removal. Previous to the passivation, Al2O3 was selectively removed to improve the adhesion of the oxide passivation
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

A non-enzymatic electrochemical hydrogen peroxide sensor based on copper oxide nanostructures

  • Irena Mihailova,
  • Vjaceslavs Gerbreders,
  • Marina Krasovska,
  • Eriks Sledevskis,
  • Valdis Mizers,
  • Andrejs Bulanovs and
  • Andrejs Ogurcovs

Beilstein J. Nanotechnol. 2022, 13, 424–436, doi:10.3762/bjnano.13.35

Graphical Abstract
  • mm length to provide electrical contact with the equipment. The measurements were carried out using an electrochemical station (Zanher, Germany), supplemented by a custom-made electrochemical cell (for more details about its structure, see our publication [71]). During the measurement, a three
PDF
Album
Full Research Paper
Published 03 May 2022

Uniform arrays of gold nanoelectrodes with tuneable recess depth

  • Elena O. Gordeeva,
  • Ilya V. Roslyakov,
  • Alexey P. Leontiev,
  • Alexey A. Klimenko and
  • Kirill S. Napolskii

Beilstein J. Nanotechnol. 2021, 12, 957–964, doi:10.3762/bjnano.12.72

Graphical Abstract
  • array and the ability to control the recess depth, and (4) a predictable number of nanoelectrodes in electrical contact with the current collector. In the present study, the first two points are fulfilled by using AAO as a template and Au as the material of the working part of the nanoelectrodes. To
  • with electrical contact, Cu was re-deposited on the surface of the Au segments (Figure 3a). The experiment was carried out at Ed = −0.1 V and limited by the electrical charge density, which is equal to the corresponding value in the case of electrodeposition of the first Cu segment. SEM images of the
  • AAO surface after Cu re-deposition are shown in Figure 3b,c. The Au nanoelectrodes having electrical contact with the current collector manifest themselves as white dots, indicating that Cu reaches the template surface. Contrary, the black dots correspond to the pores containing recessed Au electrodes
PDF
Album
Full Research Paper
Published 30 Aug 2021

Superconductor–insulator transition in capacitively coupled superconducting nanowires

  • Alex Latyshev,
  • Andrew G. Semenov and
  • Andrei D. Zaikin

Beilstein J. Nanotechnol. 2020, 11, 1402–1408, doi:10.3762/bjnano.11.124

Graphical Abstract
  • ]. Below we will also refer to this QPT as a superconductor–insulator transition (SIT). In this work we will show that this SIT can be substantially modified in a system of capacitively coupled superconducting nanowires even without any direct electrical contact between them. In our previous work [18] we
PDF
Album
Full Research Paper
Published 14 Sep 2020

Effect of localized helium ion irradiation on the performance of synthetic monolayer MoS2 field-effect transistors

  • Jakub Jadwiszczak,
  • Pierce Maguire,
  • Conor P. Cullen,
  • Georg S. Duesberg and
  • Hongzhou Zhang

Beilstein J. Nanotechnol. 2020, 11, 1329–1335, doi:10.3762/bjnano.11.117

Graphical Abstract
  • this paper, we investigate the effect of the defect population on the performance of MoS2 FETs via varying the area of ion irradiation in the FET channel. We also examine the performance of devices upon irradiation of one of the electrical contact interfaces. Experimental Monolayer MoS2 samples were
PDF
Album
Full Research Paper
Published 04 Sep 2020

Tuning the performance of vanadium redox flow batteries by modifying the structural defects of the carbon felt electrode

  • Ditty Dixon,
  • Deepu Joseph Babu,
  • Aiswarya Bhaskar,
  • Hans-Michael Bruns,
  • Joerg J. Schneider,
  • Frieder Scheiba and
  • Helmut Ehrenberg

Beilstein J. Nanotechnol. 2019, 10, 1698–1706, doi:10.3762/bjnano.10.165

Graphical Abstract
  • attached to a glassy carbon rod were used as the WE. To achieve a better electrical contact, the punched-out felt was pierced through the middle by 5 cm long glassy carbon rod with a diameter of 1 mm. The positive half-cell reaction was measured in 0.1 molar vanadyl sulphate (Alfa Aeser) dissolved in 2
PDF
Album
Full Research Paper
Published 13 Aug 2019

Hierarchically structured 3D carbon nanotube electrodes for electrocatalytic applications

  • Pei Wang,
  • Katarzyna Kulp and
  • Michael Bron

Beilstein J. Nanotechnol. 2019, 10, 1475–1487, doi:10.3762/bjnano.10.146

Graphical Abstract
  • tolerance against poisoning in comparison to those supported on carbon blacks and nonmodified catalyst supports. This could be due to improved Pt dispersion owing to a higher amount of functional anchoring sites of the catalyst supports and their high surface area, as well as from a good electrical contact
PDF
Album
Supp Info
Full Research Paper
Published 24 Jul 2019

Kelvin probe force microscopy of the nanoscale electrical surface potential barrier of metal/semiconductor interfaces in ambient atmosphere

  • Petr Knotek,
  • Tomáš Plecháček,
  • Jan Smolík,
  • Petr Kutálek,
  • Filip Dvořák,
  • Milan Vlček,
  • Jiří Navrátil and
  • Čestmír Drašar

Beilstein J. Nanotechnol. 2019, 10, 1401–1411, doi:10.3762/bjnano.10.138

Graphical Abstract
  • , tentatively summarized as I–V characteristics, are strongly affected by the oxidation of Bi2Se3. The perturbation with a height of more than 1 µm could be easily formed by the oxidation of a highly O-mobile material, e.g., BiOx. This limits the usage of I–V measurements in the static electrical contact of the
PDF
Album
Supp Info
Full Research Paper
Published 15 Jul 2019

Gas sensing properties of individual SnO2 nanowires and SnO2 sol–gel nanocomposites

  • Alexey V. Shaposhnik,
  • Dmitry A. Shaposhnik,
  • Sergey Yu. Turishchev,
  • Olga A. Chuvenkova,
  • Stanislav V. Ryabtsev,
  • Alexey A. Vasiliev,
  • Xavier Vilanova,
  • Francisco Hernandez-Ramirez and
  • Joan R. Morante

Beilstein J. Nanotechnol. 2019, 10, 1380–1390, doi:10.3762/bjnano.10.136

Graphical Abstract
  • , wherein random electrical contact between wires located on different electrodes are formed. The contact between each pair of nanowires is not stable, but due to the large number of contacts, completely stable electrical contact behavior is observed (on a statistical average). Sensors based on such systems
  • electrical contacts with individual nanowires [21][22][23][24][25][26][27][28][29][30][31][32][33]. These contacts can be made by means of photolithography, but more often, focused ion beam (FIB) technology is used for this purpose. This approach has several advantages: first, a reliable electrical contact
PDF
Album
Full Research Paper
Published 08 Jul 2019

Electroluminescence and current–voltage measurements of single-(In,Ga)N/GaN-nanowire light-emitting diodes in a nanowire ensemble

  • David van Treeck,
  • Johannes Ledig,
  • Gregor Scholz,
  • Jonas Lähnemann,
  • Mattia Musolino,
  • Abbes Tahraoui,
  • Oliver Brandt,
  • Andreas Waag,
  • Henning Riechert and
  • Lutz Geelhaar

Beilstein J. Nanotechnol. 2019, 10, 1177–1187, doi:10.3762/bjnano.10.117

Graphical Abstract
  • slowly lifted while applying a voltage to monitor the electrical contact between NW and tip. With this procedure, it was possible to minimize the pressure while contacting the NWs. The spring force that is applied to the NWs in vertical direction once the probe is moved downwards, mainly results from the
PDF
Album
Supp Info
Full Research Paper
Published 05 Jun 2019

In situ AFM visualization of Li–O2 battery discharge products during redox cycling in an atmospherically controlled sample cell

  • Kumar Virwani,
  • Younes Ansari,
  • Khanh Nguyen,
  • Francisco José Alía Moreno-Ortiz,
  • Jangwoo Kim,
  • Maxwell J. Giammona,
  • Ho-Cheol Kim and
  • Young-Hye La

Beilstein J. Nanotechnol. 2019, 10, 930–940, doi:10.3762/bjnano.10.94

Graphical Abstract
  • cell design The Li/O2 cell consisted of a polyetheretherketone (PEEK) cell body (Figure 1a) with a stainless steel (SS) stub (Figure 1b) that allowed electrical contact to glassy carbon cathode (Figure 1c) as shown in Figure 1. For AFM experiments, the design challenge was to allow the AFM tip contact
  • of a donut-shaped polyethylene separator (Figure 1d) and lithium (Figure 1e) anode. The electrical contact to the lithium anode was made using stainless steel (Figure 1b). The entire assembly was performed inside of the glove box (<0.1 ppm H2O and O2), allowing the assembled cell to be free of
PDF
Album
Supp Info
Full Research Paper
Published 24 Apr 2019

Nanoporous water oxidation electrodes with a low loading of laser-deposited Ru/C exhibit enhanced corrosion stability

  • Sandra Haschke,
  • Dmitrii Pankin,
  • Vladimir Mikhailovskii,
  • Maïssa K. S. Barr,
  • Adriana Both-Engel,
  • Alina Manshina and
  • Julien Bachmann

Beilstein J. Nanotechnol. 2019, 10, 157–167, doi:10.3762/bjnano.10.15

Graphical Abstract
  • , microscope cover glasses provided with approx. 700 nm of heat-treated indium tin oxide (ITO, which serves as the electrical contact in subsequent electrochemical measurements) are placed for laser-induced coating on a microcuvette filled with the precursor solution. An unfocused He-Cd laser beam irradiates
  • inside the Al2O3 pores (with additional material on the front sample side, Figure 6a,d). In a last step, an ITO electrical contact is sputter-coated onto the front side of the sample. EDX spectroscopy reveals the presence of expected elements Al, O, P and In of the substrate and electrical contact, as
  • oxidized, and in part hydrated. Water oxidation at nanostructured Ru/C electrodes We then applied our nanoporous Ru/C electrodes to the water oxidation reaction. Therefore, an approx. 1 μm thick ITO layer at one pore extremity serves as an electrical contact. We choose pH 4 (KH2PO4 buffer) for the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2019

Hydrogen-induced plasticity in nanoporous palladium

  • Markus Gößler,
  • Eva-Maria Steyskal,
  • Markus Stütz,
  • Norbert Enzinger and
  • Roland Würschum

Beilstein J. Nanotechnol. 2018, 9, 3013–3024, doi:10.3762/bjnano.9.280

Graphical Abstract
  • ]. For electrochemical dealloying the square-shaped samples were placed in a Linseis L75 vertical pushrod dilatometer, operating at a constant force of 100 mN. Electrical contact to an Autolab PGSTAT204 potentiostat was established using an annealed Pd wire (ChemPur, 99.95%). A coiled Pd wire and an Ag
PDF
Album
Full Research Paper
Published 10 Dec 2018

Impact of the anodization time on the photocatalytic activity of TiO2 nanotubes

  • Jesús A. Díaz-Real,
  • Geyla C. Dubed-Bandomo,
  • Juan Galindo-de-la-Rosa,
  • Luis G. Arriaga,
  • Janet Ledesma-García and
  • Nicolas Alonso-Vante

Beilstein J. Nanotechnol. 2018, 9, 2628–2643, doi:10.3762/bjnano.9.244

Graphical Abstract
  • electrical contact of a Cu wire and colloidal-Ag paste (Radiospares 496-256). The TiO2-NT area was exposed by isolating with epoxy glue (3M, DP-190). Cyclic voltammetry (CV), in N2-saturated 0.5 M H2SO4 electrolyte was performed to clean the electrode surface from 0.05 to 1 V/NHE at a scan rate of 100 mV/s
PDF
Album
Supp Info
Full Research Paper
Published 04 Oct 2018

Intrinsic ultrasmall nanoscale silicon turns n-/p-type with SiO2/Si3N4-coating

  • Dirk König,
  • Daniel Hiller,
  • Noël Wilck,
  • Birger Berghoff,
  • Merlin Müller,
  • Sangeeta Thakur,
  • Giovanni Di Santo,
  • Luca Petaccia,
  • Joachim Mayer,
  • Sean Smith and
  • Joachim Knoch

Beilstein J. Nanotechnol. 2018, 9, 2255–2264, doi:10.3762/bjnano.9.210

Graphical Abstract
  • realized using a tantalum (Ta) stripe in electrical contact to the sample as a work function reference. Further UPS-data of SiO2 and Si3N4 reference samples as well as UPS signal normalization are available in Supporting Information File 1. All samples for TEM investigation were capped with a protective
PDF
Album
Supp Info
Full Research Paper
Published 23 Aug 2018

Electrical characterization of single nanometer-wide Si fins in dense arrays

  • Steven Folkersma,
  • Janusz Bogdanowicz,
  • Andreas Schulze,
  • Paola Favia,
  • Dirch H. Petersen,
  • Ole Hansen,
  • Henrik H. Henrichsen,
  • Peter F. Nielsen,
  • Lior Shiv and
  • Wilfried Vandervorst

Beilstein J. Nanotechnol. 2018, 9, 1863–1867, doi:10.3762/bjnano.9.178

Graphical Abstract
  • micro four-point probe (μ4PP) technique to electrically characterize single nanometer-wide fins arranged in dense arrays. We show that through the concept of carefully controlling the electrical contact formation process, the electrical measurement can be confined to one individual fin although the used
  • control the electrical contact between the metallic (Ni-coated) μ4pp electrodes and the semiconducting (Si) fins. Next, we show that, by carefully controlling this process, the electrical contact can be confined to one single fin such that the resistance of individual fins in dense arrays can be measured
  • demonstrated high precision, a critical dimensional sensitivity of ca. 0.5 nm could be achieved. Experimental Before discussing the electrical contact between the μ4pp electrodes and an individual fin, a general description of a μ4pp measurement on large blanket semiconducting samples is needed. The μ4pp
PDF
Album
Full Research Paper
Published 25 Jun 2018

Nanoscale electrochemical response of lithium-ion cathodes: a combined study using C-AFM and SIMS

  • Jonathan Op de Beeck,
  • Nouha Labyedh,
  • Alfonso Sepúlveda,
  • Valentina Spampinato,
  • Alexis Franquet,
  • Thierry Conard,
  • Philippe M. Vereecken,
  • Wilfried Vandervorst and
  • Umberto Celano

Beilstein J. Nanotechnol. 2018, 9, 1623–1628, doi:10.3762/bjnano.9.154

Graphical Abstract
  • and Li2CO3) [14]. This has a large influence on the C-AFM measurement as the insulating compounds on the top surface impact on the observed conductivity, up to preventing all electrical contact to the underlying film. We believe such oxide formation can also be observed in the present work since after
PDF
Album
Supp Info
Letter
Published 04 Jun 2018

Electrostatically actuated encased cantilevers

  • Benoit X. E. Desbiolles,
  • Gabriela Furlan,
  • Adam M. Schwartzberg,
  • Paul D. Ashby and
  • Dominik Ziegler

Beilstein J. Nanotechnol. 2018, 9, 1381–1389, doi:10.3762/bjnano.9.130

Graphical Abstract
  • charging states in the encasement material, the electrical contact potential or any other static offsets. Not requiring any dc voltage greatly reduces the risk of electrolytic production of gas bubbles. Electrostatic actuation in encased cantilevers provides more gentle imaging and more reliable
PDF
Album
Full Research Paper
Published 08 May 2018

Mechanistic insights into plasmonic photocatalysts in utilizing visible light

  • Kah Hon Leong,
  • Azrina Abd Aziz,
  • Lan Ching Sim,
  • Pichiah Saravanan,
  • Min Jang and
  • Detlef Bahnemann

Beilstein J. Nanotechnol. 2018, 9, 628–648, doi:10.3762/bjnano.9.59

Graphical Abstract
  • exposed to the environment. (c) Metal NPs having a direct electrical contact by being fully embedded within the semiconductor without being exposed to the environment. (d) Metal NPs isolated from the semiconductor by a non-conducting layer to prevent direct electric contact. Reprinted with permission from
PDF
Album
Review
Published 19 Feb 2018

Review: Electrostatically actuated nanobeam-based nanoelectromechanical switches – materials solutions and operational conditions

  • Liga Jasulaneca,
  • Jelena Kosmaca,
  • Raimonds Meija,
  • Jana Andzane and
  • Donats Erts

Beilstein J. Nanotechnol. 2018, 9, 271–300, doi:10.3762/bjnano.9.29

Graphical Abstract
  • electrical contact between a switching element and a contact electrode, which is followed by electrical-current-assisted processes in the on state, and a subsequent disengagement of both electrical and mechanical contacts while switching back to the off state. The switching cycle is based on balancing
  • , inset) [32]. When the gradient of total attractive force exceeds the spring constant of the switching element approaching the electrode surface, the switching element starts accelerating. This is followed by establishment of mechanical and electrical contact between them (jump-in), and consequently
  • challenges, together with some of the proposed applications of the materials for NEM switching elements is presented in Table 2. Choice of electrical contact material Despite numerous studies [51][52][82] on the properties of the electrical contacts at the nanoscale
PDF
Album
Review
Published 25 Jan 2018

Combined scanning probe electronic and thermal characterization of an indium arsenide nanowire

  • Tino Wagner,
  • Fabian Menges,
  • Heike Riel,
  • Bernd Gotsmann and
  • Andreas Stemmer

Beilstein J. Nanotechnol. 2018, 9, 129–136, doi:10.3762/bjnano.9.15

Graphical Abstract
  • = 2 mΩ·cm) silicon wafers coated with a 100 nm thick thermal oxide. Electrical contact pads and alignment marks for e-beam alignment and localization of the NWs where defined and fabricated using an ultraviolet lithography process. The InAs NWs were transferred from a growth substrate onto the pre
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2018
Other Beilstein-Institut Open Science Activities